More

    Many Asian countries are joining this trend

    A quantum computer in a non-vibrating building. Quantum computing will eventually accelerate the computing power that powers many industries and could affect everything from drug discovery to how data is secured.

    Oliver Berg | Image Union | beautiful pictures

    Quantum computing took off in Japan and elsewhere in Asia when the University of Tokyo and IBM launched their new quantum computers last year.

    The computer is the second such system built by IBM outside the United States – the latest in a series of significant strides forward in quantum research.

    The university and IBM led the Quantum Innovation Initiatives Consortium alongside Japanese industry heavyweights such as Toyota and Sony – all aimed at nailing the quantum question.

    Quantum computing refers to the use of quantum mechanics to run calculations. Quantum computing can run multiple processes at once using quantum bits, unlike the binary bits that power traditional computation.

    Challenging the US ‘hegemony’

    New technology will eventually accelerate the computing power that powers many industries and could affect everything from drug discovery to how data is secured. Several countries are racing to make quantum computers fully operational.

    Christopher Savoie, CEO of quantum computing company Zapata, who has spent most of his career in Japan, says technology development is focused on the United States. But now, Asian countries don’t want to be left behind in quantum computing, he added.

    “Countries like India, Japan and China are very interested in not being the only incompetent there. They don’t want to see the kind of hegemony arising where companies gather crowds. big clouds are just US companies,” Savoie said, referring to things like Amazon Web Services and Microsoft Azure.

    For example, China has committed a lot of brainpower to the quantum race. Researchers have made breakthroughs and debates are heating up about whether China has surpassed the US in some aspects.

    For its part, India announced plans to invest $1 billion earlier this year in a five-year plan to develop quantum computers in the country.

    James Sanders, an analyst at S&P Global Market Intelligence, told CNBC that governments around the world are paying more attention to quantum computing in recent years.

    In March, Sanders released a report showing that governments had pledged about $4.2 billion to support quantum research. Some notable examples include South Korea’s $40 million investment in the field and Singapore’s Ministry of Education funding a research center, the Quantum Technology Center.

    Where will it be used?

    All of these efforts have a vision of the future. And for some, the benefits of quantum can be illusory.

    According to Sanders, the benefits of quantum computing will not be immediately apparent to everyday consumers.

    What is likely to happen is that quantum computers will be used in the design of products that consumers will eventually buy.

    James Sanders

    Analyst, S&P Global Market Intelligence

    “On a bad day, I’m telling people from the idea of ​​a quantum cell phone. It’s not realistic, it won’t matter,” he said.

    “What is likely to happen is that quantum computers will be leveraged in the design of products that consumers will eventually buy.”

    There are two main areas where quantum breakthroughs will be felt – industrial and defense.

    An employee of the technology company Q.ant places a chip for quantum computing at a test station in Stuttgart, Germany, on September 14, 2021. It is expected that the power of quantum computing will be able to decrypt RSA encryption, one of the most popular encryption methods for securing data.

    Thomas Kienzle | Afp | beautiful pictures

    “Areas you have HPC [high-performance computing] are the areas where we will see quantum computers have an impact. It’s things like simulations of matter, simulations of aerodynamics, these things, very difficult, highly computational problems, and then machine learning artificial intelligence,” Savoie said.

    In pharmaceuticals, traditional systems for calculating the activity of drug molecules can be time-consuming. The speed of quantum computing could accelerate these processes around drug discovery and ultimately the timeline for drugs to market.

    Security challenges

    On the other hand, quantum can pose security challenges. As computing power increases, the risks to existing security methods also increase.

    “Long-term [motivation] but what everyone recognizes as an existential threat, both offensively and defensively, is the cryptosphere. RSA will eventually be compromised by this,” added Savoie.

    RSA refers to one of the most popular encryption methods for securing data, developed in 1977, which can be affected by quantum speed. It is named after its inventors – Ron Rivest, Adi Shamir and Leonard Adleman.

    You’re seeing a lot of interest from governments and communities who don’t want to be the last in the block to have that technology because [other nations] will be able to decrypt our messages.

    Christopher Savoie

    CEO of Zapata

    “You’re seeing a lot of interest from governments and communities who don’t want to be the last in the block to have that technology because [other nations] Savoie said.

    Magda Lilia Chelly, director of information security at Singaporean cybersecurity company Responsible Cyber, told CNBC that there needs to be a parallel between cryptographic and quantum research and development for security to not be surpassed.

    “Some experts believe that quantum computers will eventually be able to break all forms of encryption, while others believe that new and more complex forms of encryption will be developed that cannot be broken,” says Chelly. unbreakable quantumness”.

    A quantum processor on a prototype of a quantum computer. Magda Lilia Chelly, director of information security at Singapore’s responsible cybersecurity firm Cyber, said there needs to be a parallel between cryptographic and quantum research and development for security not to be surpassed. .

    Julian Stratenschulte / dpa | Image Union | beautiful pictures

    “Especially, [researchers] have been looking to use quantum computers to compute large numbers quickly. This is important because many modern encryption schemes used today are based on the fact that it is very difficult to account for large numbers,” she added.

    If successful, this will make it possible to break most current encryption schemes, allowing you to unlock encrypted messages.

    Process ‘stop starting’

    Sanders said the development and eventual commercialization of quantum computing will not be a straight line.

    Issues like the threat to cryptocurrencies can attract attention from governments, but research and breakthroughs, as well as major concerns, can be “the first step,” he said.

    Progress may also be affected by fluctuating interest from private investors as quantum computing will not provide a quick return on investment.

    Analyst says US tech stocks will rise no matter what

    “There’s a lot of situations in this industry where you can lead for a week and then another company offers a different kind of promotion and then things quiet down a bit.”

    Another challenge for quantum research is finding the right talent with specific skills for this research.

    “Quantum scientists can make quantum computing grow on trees,” Savoie said, adding that cross-border collaboration is needed in the face of competing government interests. .

    “Talent is universal. People don’t have the right to choose what country they were born in or what nationality they have.”

    Recent Articles

    spot_img

    Featured Article

    Leave A Reply

    Please enter your comment!
    Please enter your name here

    Stay on op - Ge the daily news in your inbox